Articles scientifiques

Manuels scientifiques

Clobert, N., & Gauvrit, N. (2021). Psychologie du haut potentiel: Comprendre identifier accompagner. De Boeck Supérieur.

Pfeiffer, S. I. (2018). APA handbook of giftedness and talent. American Psychological Association.

Pfeiffer, S. I. (2018). Handbook of giftedness in children: Psychoeducational theory, research, and best practices. Springer.

Modèles théoriques

Dai, Y. D. et Renzulli, J. S. (2008). Snowflakes, Living systems, and the Mistery of Giftedness. Gifted Child Quartely, 52, 114-130.

Ferrando, M., Ferrándiz, C., Llor, L. & Sainz, M. (2016). Successful Intelligence and Giftedness: an Empirical Study. Anales de Psicología, 32, 672-683.

Gagné, F. (2020). Differentiating Giftedness from Talent: The DMGT Perspective on Talent Development. Routledge.

Gagné, F. (2013). The DMGT: Changes within, beneath, and beyond. Talent Development & Excellence, 5, 5-19.

Gagné, F. (2015). From Genes to Talent: DMGT/CMTD Perspective. Revista de Education, 328, 12-37.

Hollingworth, Leta S. (1926). Gifted Children: Their Nature and Nurture.

Mestre, J. M., MacCann, C., Guil, R. & Roberts, R. D. (2016). Models of Cognitive Ability and Emotion Can Better Inform Contemporary Emotional Intelligence Frameworks. Emotion Review, 8 (4), 322 –330.

Renzulli, T. S. (1978). What Makes Giftedness? Re-examining a Definition. Phi Delta Kappan, 60, 180-184, 261.

Renzulli, J. S. (1999). What Is This Thing Called Giftedness, and How Do We Develop It? A Twenty-Five Year Perspective. Journal for the Education of the Gifted, 23 (1), 3-54.

Shearer, C. B. & Karanian, J. M. (2017). The Neurosciences of Intelligence: Empirical Support for the Theory of Multiple Intelligence. Trends in Neuroscience and Education, 6, 211-223.

Sternberg, R. J. (2000). Patterns of Giftedness: A Triarchic Analysis. Roeper Review, 22 (4), 231-235.

Sternberg, R. J., Castejon, J. L., Prieto, M. D., Hautamaki, J. & Grigorenko, E. L. (2001). Confirmatory Factor Analysis of the Sternberg Triarchic Abilities Test in Three International Samples. European Journal of Psychological Assessment, 17, 1-16.

Zenasni, F., Mourgues, C., Nelson, J., Muter, C., Myszowski, N. (2016). How Does Creative Giftedness Differ from Academic Giftedness? A Multidimensional Conception. Learning and Individual Differences.


Aron, E. & Aron, A. (1997). Sensory-Processing Sensitivity and its Relation to Introversion and Emotionality. Journal of Personality and Social Psychology, 73,‎ 345-368.

Gere, D. R., Capps, S. C., Mitchell, D. W. & Grubbs, E. (2009). Sensory Sensitivities of Gifted Children / Invited Commentary on “Sensory Sensitivities of Gifted Children.” American Journal of Occupational Therapy, 63 (3)

Melnick, M. D., Harrison, B.R., Park, S., Bennetto, L., Tadin, D. (2013). A Strong Interactive Link between Sensory Discriminations and Intelligence. Curr Biol., 23 (11), 1013-1017.

Meyer, C. S., Hagmann-von Arx, P., Lemola, S. & Grob, A. (2010). Correspondence Between the General Ability to Discriminate Sensory Stimuli and General Intelligence. Journal of Individual Differences, Vol 31 (1), 46-56.

Neurologie, biologie et hérédité

Batterjee, A. A., Omar, K., Khalil, A. & Richard, L. (2013). Normative Data for IQ, Height and Head Circumference for Children in Saudi Arabia. Journal of Biosocial Science, 45 (4), 451-459.

Bouchard, T. J. (2013). « The Wilson Effect: The Increase in Heritability of IQ with Age ». Twin Research and Human Genetics. 16 (05), 923–930.

Broekman, B. F. P. et al. (2009). The Influence of Birth Size on Intelligence in Healthy Children. Pediatrics, 123 (6), e1011-e1016.

Devlin, B. Daniels, M., Roeder, K. (1997). The Heritability of IQ. Nature, 388 (6641), 468–471

Durdiaková, J., Celec, P., Laznibatová, J., Minárik, G, & Ostatníková, D. (2016). Testosterone Metabolism: A Possible Biological Underpinning of Non-verbal IQ in Intellectually Gifted Girls. Acta Neurobiologiae Experimentalis, 76 (1), 66-74.

Geiger, A., Achermann, P., Jenni. O. G. (2010). Association between Sleep Duration and Intelligence Scores in Healthy Children. Developmental Psychology, 46, 949-954.

Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004). Structural Brain Variation and General Intelligence. NeuroImage, 23, 425-433.

Haier, R. J. & Benbow, C. P. (1995). Sex Differences and Lateralization in Temporal Lobe Glucose Metabolism During Mathematical Reasoning. Developmental Neuropsychology, 11(4), 405–414.

Haier, R. J., Siegel., B., Tang, C., Abel, L. & Buchsbaum, M. S. (1992). Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning. Intelligence, 16(3), 415-426.

Jambaqué, I. (2004). Analyse de la littérature : Contribution de la neuropsychologie développementale à l’étude des sujets à haut potentiel : une revue de question. Psychologie française, 49, 267-276.

Jaušovec, N. (2000). Differences in Cognitive Processes between Gifted, Intelligent, Creative, and Average Individuals While Solving Complex Problems: An EEG Study. Intelligence, Vol 28 (3), 2000, 213-237.

Jaušovec, N. (1996). Differences in EEG Alpha Activity Related to Giftedness. Intelligence, 23 (3), 159–173.

Jung, R. E., et Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of Intelligence: Converging Neuroimaging Evidence. Behavioral and Brain Sciences, 30, 135-187.

Karlsson, J. L. (2009). Major Intelligence Gene Tied to Myopia: A Review. Mankind Quarterly, Spring 2009.

Karlsson, H., Björn, A. D., Christina, D. & Hemmingsson, T. (2010). Association between Erythrocyte Sedimentation Rate and IQ in Swedish Males Aged 18–20. Brain, Behavior, and Immunity, 24 (6), 868-873.

Kim, D-J., Davis, E. P., Sandman, C. A., Sporns, O., O’Donnell, B. F., Buss, C. & Hetrick, W. P. (2016). Chilrden’s Intellectual Ability is Associated with Structural Network Integrity. NeuroImage, 124, 550-556.

Lee, K.H., Choi, Y.Y., Gray, J.R., Cho, S.H., Chae, J-H., Lee, S., & Kim, K. (2006). Neural Correlates of Superior Intelligence: Stronger Recruitment of Posterior Parietal Cortex. NeuroImage, 29, 578 – 586.

Li, Z., Gan, J. Q. & Wang, H. (2017) Neurocognitive Mechanisms of Mathematical Giftedness: A Literature Review. Applied Neuropsychology: Child, 6, 79-94.

Neubauer, A. C. & Fink, A. (2009). Intelligence and Neural Efficiency. Neuroscience and Biobehavioral Reviews, 33 (7), 1004-1023.

Ostatníková, D., Putz, Z., Celec, P., Okkelová, J. & Laznibatová, J. (2006). May Testosterone Be Considered as One of the Biological Markers Related to Academic Intelligence. Homeostasis in Health and Disease, 44 (1-2), 49-56.

Rae, C., Scott, R. B., Thompson, C. H., Kemp, J. K., Dumughn, I., Styles, P., Tracey, I. & Radda, G. K. (1996). Is pH a Biochemical Marker of IQ? Proceedings: Biological Sciences, 263, 1061-1064.

Ramsden, S., Richardson, F.M., Josse, G., Thomas, M.S., Ellis, C., Shakeshaft, C., Seghier, M.L. & Price, C.J. (2011). Verbal and Non-Verbal Intelligence Changes in the Teenage Brain. Nature, 479, 113-116.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. & Giedd, J. (2006) Intellectual Ability and Cortical Development in Children and Adolescents. Nature, 440, 676–679.

Thompson, L. A., & Oehlert, J. (2010). The Etiology of Giftedness. Learning and Individual Differences, 20, 298-307.

Troche, S., J., & Rammsayer, T. H. (2009). Temporal and Non-Temporal Sensory Discrimination and their Prediction of Capacity and Speed Related Aspects of Psychometric Intelligence. Personality and Individual Differences, 47, 52-57.

Tsukahara J.S & al. (2016). The Relationship between Baseline Pupil Size and Intelligence, Cognitive Psychology 91, 109–123.